Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Technologies ; 9(4):89, 2021.
Article in English | MDPI | ID: covidwho-1524157

ABSTRACT

In this study, TiO2 nanofibers were prepared with Polyvinylpyrrolidone (PVP) polymer using sol-gel method via electrospinning technique. Owing to the advantages of small fiber diameter, tunable porosity, low cost, large surface to volume ratio, structure control, light-weight, and less energy consumption, electrospun nanofibers are evolving as an adaptable material with a number of applications, in this case for filtration and environmental/virus protection. Different samples of TiO2/PVP nanofibers have been prepared by changing the parameters to achieve the best result. As the polymer concentration was increased from 6 to 8 wt.% of PVP, diameter of the resultant fibers was seen to be increased, implying decrease in the pore-size of the fibers up to 1.4 nm. Surface morphology has been checked via Scanning Electron Microscope (SEM) images. Crystalline nature has been analyzed by X-Ray Crystallography. Using the Bruanauer-Emmett-Teller (BET) test, surface area and porosity has been checked for the suitable application. The synthesized TiO2/PVP nanofibers have tremendous practical potentials in filtration and environmental remediation applications.

2.
Drug Dev Ind Pharm ; 47(5): 699-710, 2021 May.
Article in English | MEDLINE | ID: covidwho-1243366

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 or COVID-19), outbreak was first reported in December 2019 in the Wuhan, China. COVID-19 managed to spread worldwide and so far more than 9.1 million cases and more than 4.7 lakh death has been reported globally. Children, pregnant women, elderly population, immunocompromised patients, and patients with conditions like asthma, diabetes, etc. are highly vulnerable to COVID infection. Currently, there is no treatment available for COVID-19 infection. Traditional medicinal plants have provided bioactive molecules in the past that are efficiently used during conditions like cancer, malaria, microbial infections, immune-compromised states, etc. AYUSH India has recommended the use of Curcuma longa, Allium sativum, Ocimum tenuiflorum, and Withania somnifera for immune-boosting during SARS-CoV-2 infection. In the present study, we investigated the potential of 63-major bioactive molecules of these plants against SARS-CoV-2 main protease (Mpro) through docking studies and compared the results with known inhibitor 11a. Our results proposed cuscohygrine, γ-Glutamyl-S-allylcysteine, anahygrine, and S-allylcystein as the potent inhibitors against Mpro identified using molecular docking and molecular simulation dynamics. Interestingly, these molecules are from A. sativum, and W. somnifera, which are known for their antimicrobial and immunomodulatory potential. None of the proposed molecules have earlier been reported as antiviral molecules. Our results predict very strong potential of these four-molecules against SARS-CoV-2 Mpro, especially γ-glutamyl-S-allylcysteine, as all four form hydrogen bonding with Glu166 that is a crucial residue for the formation of the biologically active dimeric form of Mpro. Therefore, we strongly recommend further research on these biomolecules against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antiviral Agents , Child , China , Dipeptides , Female , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Pregnancy , Protease Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL